z^2=223/49

Simple and best practice solution for z^2=223/49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2=223/49 equation:



z^2=223/49
We move all terms to the left:
z^2-(223/49)=0
We add all the numbers together, and all the variables
z^2-(+223/49)=0
We get rid of parentheses
z^2-223/49=0
We multiply all the terms by the denominator
z^2*49-223=0
Wy multiply elements
49z^2-223=0
a = 49; b = 0; c = -223;
Δ = b2-4ac
Δ = 02-4·49·(-223)
Δ = 43708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{43708}=\sqrt{196*223}=\sqrt{196}*\sqrt{223}=14\sqrt{223}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{223}}{2*49}=\frac{0-14\sqrt{223}}{98} =-\frac{14\sqrt{223}}{98} =-\frac{\sqrt{223}}{7} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{223}}{2*49}=\frac{0+14\sqrt{223}}{98} =\frac{14\sqrt{223}}{98} =\frac{\sqrt{223}}{7} $

See similar equations:

| 5=13-2y | | 2x-18+3x+24=10x-4 | | 4x-6x-80=180 | | 35=-5/6v | | 7=18-k | | 27=-6x+3x+6 | | -3b-2=-10-b | | 164=12x+20 | | 16=b+3 | | -2a-3a-6=-1 | | -6j=-7j-6 | | 7=-x+2x+1 | | 12=-25+n | | 34/3=2/3-4n | | 1-0.2x=0.3x-2 | | -4(3a-1)=12 | | 1/3(7x-1)-3=2 | | 2z-1=5z-10 | | 10.8=1.2(x-6) | | -3=f-15 | | -9+3j=7-5j | | t-6/2=90 | | 0.03g-2g+3=1.8 | | 5x-4+121=180 | | 1/2d+-3=4 | | y/4+8=-12 | | 6(y+3)=5y+18 | | -x-4x+7=12 | | -4s+24=-8s | | -10f=20-6f | | 22=-2z | | -x=7X+56 |

Equations solver categories